Technical proposal for Boiling house Equipment for expansion of Sugar plant 2500 TCD to 4200 TCD

Client: M/s Shri Shankar SSK Ltd.

Sadashivnagar, Tal: Malshiras, Dist: Solapur

INDEX

Sr. No.	PARTICULAR
1	PRAPOSED STEAM AND MASS BALANCE FOR 4200 TCD
2	EXISTING & PRAPOSED EVAPORATOR BODIES + JUICE HEATER ARRANGEMENT
3	SOLID BALANCE REPORT
4	EXISTING & PROPOSED EQUIPMENT LIST
5	EXISTING AND PRAPOSED BOILING HOUSE PUMP LIST

01) HEAT MASS BALANCE OF 4200 TCD (175 TCH) SUGAR PLANT

Absolute pressure and pressure drop

Exhaust condition: - 2.033 kg/cm2 (120 Deg C)

Last body vacuum: - 0.204 (24''vacuum) kg/cm2

Corresponding pressure/temp. Distribution of quintuple. Total pressure drop = 2.033 –0.204 = 1.828 kg/cm²

- 1) Pressure drop in 1^{st} body = $11/50 \times 1.828 = 0.402 \text{ kg/cm}2$
- 2) Pressure drop in 2^{nd} body = $10.5/50 \times 1.828 = 0.384 \text{ kg/cm}2$
- 3) Pressure drop in 3^{rd} body = $10/50 \times 1.828 = 0.366 \text{ kg/cm}2$
- 4) Pressure drop in 4^{th} body = $9.5/50 \times 1.828 = 0.347 \text{ kg/cm}^2$
- 5) Pressure drop in 5^{th} body = $9/50 \times 1.828 = 0.329 \text{ kg/cm}2$

Then,

- 1) Absolute pressure in 1^{st} body = 2.033 -0. 402 = 1.631 kg/cm²
- 2) Absolute pressure in 2^{nd} body = 1.631 0.384 = 1.246 kg/cm²
- 3) Absolute pressure in 3^{rd} body = 1.246 -0.366 = 0.881 kg/cm²
- 4) Absolute pressure in 4^{th} body = 0.881 0.347 = 0.533 kg/cm²
- 5) Absolute pressure in 5^{th} body = 0.533 0.329 = 0.204 kg/cm²

Corresponding pressure/temp. of quintuple are

I - 1.631 /113.24°C, II -1.246 /105.308°C, III -0.881/95.6°C, IV - 0.533 /82.548°C, V - 0.204 /60.371°C, Corresponding latent heat are

I – 541.117 II -544.128 III -548.109 IV -553.89 V- 564.634

Vapour required For A Massecuite = $0.45x \, 49633 = 22335 \, \text{Kg/Hr}$.

B Massecuite produced = $175 \times 12.019 / 100 = 21.033 \text{ Ton/ Hr} = 21033 \text{ Kg/ Hr}$. Vapour required For B Massecuite = $0.39 \times 21033 = 8329 \text{ kg/Hr}$

C Massecuite produced = $175 \times 6.331/100 = 11.079 \text{ Ton/Hr} = 11079 \text{ Kg/Hr}.$

Vapour required For C Massecuite = 0.51 x 11079 = 5650 kg/Hr

Mix juice % cane = 100.079 %

Mix juice produced per hour = 4200/24 = 175.139 Ton / hr = 175139 kg/hr.

Filtrate % cane = 14.2%

Sulphured juice % cane = 115.929%

Sulphured juice produced = $175 \times 1.15929 = 202.877 \text{ ton /hr} = 202877 \text{ kg/hr}$

- A) Vapour required for 1st raw juice heating from 30 deg. to 42deg. in vapour line juice heater by last body vapour
 - $= 175139 \times 09 \times (42-30) / 564.634$
 - = 3394 Kg/Hr
- B) Water required for 2nd raw juice heating from 42°C to 55°c by Hot condensate in Condensate juice heater
 - $= 175139 \times 0.9 \times (55-42) / (105-65) = 56920 \text{ kg/hr} = 51.23 \text{T/hr}$
 - C) Vapour required for 3rd raw juice heating from 55 deg. to 72deg. in Tubular juice heater by 4th Body vapour
 - $= 175139 \times 0.9 \times (72-55) / 548.102 = 4954.00 \text{ kg} / \text{hr}$
 - D) Vapour required for 1st Sulphured juice heating from 70^oc to 85^oc by 2nd body vapour in Tubular juice heater by 2nd Body vapour = 202877 X 0.9 X (85-70) /548.109= 5060 kg / hr
 - E) Vapour required for 2nd Sulphured juice heating from 85^oc to 102^oc by 1st body vapour in Tubular juice heater

- $= 202877 \times 0.9 \times (102 85) / 541.117 = 5812 \text{ kg/hr}$
- F) Vapour required for Clear juice heating from 96°c to 110°c by 1st body vapour in DCH = 180129 X 0.9 X (103-96) /541.117 = 2084 kg/hr
- G) Vapour required for Clear juice heating from 103°C to 110°C By Exhaust steam in tubular JH
 - $= 180129 \times 0.9 \times (110-103)/538.729$
 - = 2093 Kg/Hr

Vapour produced by 5^{th} body = X + 3394

Vapour produced by 4^{th} body = X + 3394

Vapour produced by 3^{rd} body = X + 3394 + 4954 + 5060

Vapour produced by 2^{nd} body = X + 3394 + 4954 + 5060 + 22335 + 8329 + 5650

Vapour produced by 1^{st} body = X + 3394 + 4954 + 5060 + 22335 + 8329 + 5650 + 5812 + 2084 + 3500

Total vapour produced = 5 X + 131054

Total evaporation = 180129 (60-14.409 / 60) = 134210 kg/hr

$$5 X + 131054 = 134210$$
 $X = 0631$ kg /hr

- 1) Vapour produced by 5^{th} body = 4026 Kg/Hr
- 2) Vapour produced by 4^{th} body = 4026 Kg/Hr
 - 2) Vapour produced by 3^{rd} body = 14042 Kg/Hr
 - 3) Vapour produced by 2^{nd} body = 50356 Kg/Hr
 - 4) Vapour produced by 1^{st} body = 61761 Kg/Hr

Then

A) Heating surface of 1st body $-61761/28 = 2206 \approx 2800$ m2 approximate

- B) Heating surface of 2^{nd} body -50356/22 = 2289 m2 ≈ 2500 m2 approximate
- C) Heating surface of 3^{rd} body $-14042/15 = 936 \approx 900$ m2 approximate
- D) Heating surface of 4^{th} body $-4026/12 = 335 \approx 540$ m2 approximate
- E) Heating surface of 5^{th} body $-4026/12 = 335 \approx 440$ m2 approximate

Steam % cane =
$$(61.761/175) \times 100$$

= 35.292%

(Considered 2.968 Mt/Hr exhaust required for CJ2 heating and Misc. use)

Steam % on Cane Will be = (64.729/175) %

= 36.99 %

Brixes in Quintuple bodies

1. 1st Effect Evaporator Body

2. 2nd effect Evaporator Body

$$B2 = 39.451$$

3. 3rd Effect Evaporator Body

$$B3 = 50.428$$

4. 4th Effect Evaporator Body

$$B4 = 54.799$$

5. 5th Effect Evaporator Body

$$B5 = 60.00$$

Raw Juice Brix = 14.214

1. 1st Effect Evaporator Body

= -----

2

B1 = 18.283

2. 2nd effect Evaporator Body

$$22.156 + 39.451$$

= -----

2

B2 = 30.804

3. 3rd Effect Evaporator Body

$$39.451 + 50.428$$

= -----

2

B3 = 44.940

4. 4th Effect Evaporator Body

= -----

2

B4 = 52.614

5. 5th Effect Evaporator Body 54.799+60.00

= -----

2

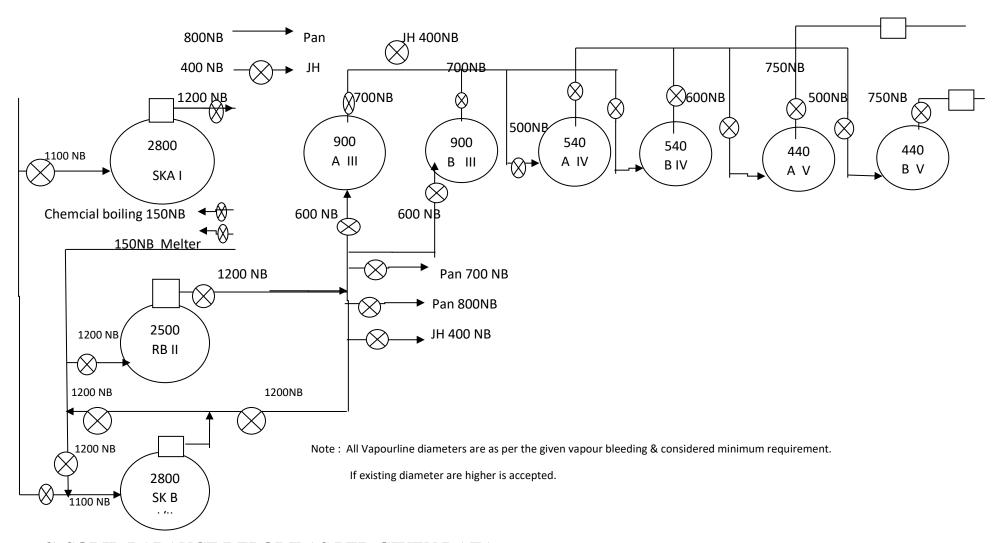
B5 = 57.400

2) EXISTING AND PRAPOSED EVAPORATOR AND JUICE HEATER ARRANGEMENT

Evaporators				
EXISTING PROPOSED Case 1 PROPOSED Case 2 PROPOSED Case 3				

WORKING	STANDBY	WORKING	STANDBY	WORKING	STANDBY	WORKING	STANDBY
2,800	NIL	2800A	2800 B	2800A		2800B	
2,500	900A+700	2,500	2800 B	2800B	2,500	2,500	2800A
900B	NII	900B	900A	900A	900B	900B	900A
560	560	560A	560B	560B	560A	560A	560B
440	440.000	440A	440B	440B	440A	440A	440B
							•

	JC Heaters						
Heating	EXIS	TING	PROPOSED		New		
	WORKING	STANDBY	WORKING	STANDBY			
RJ1	350 M2	350M2	350M2	350M2	Nil		
RJ2	NIL	NIL	170M2	170M2	Use spareJH		
RJ3	170M2	170M2	170M2	170M2			
SJ1	170M2	170142	170M2	170142	Existing JH		
SJ2	170M2	170M2	170M2	170M2	rearrange		
CJ1	170M2	NIL	170M2	No need	Existing JH		
CJ2	NIL	NIL	170M2	No need	rearrange		



	I Effect	II effect	III Effect	IV Effect	V Effect
Existing	SK2800 M2 A	2500 M2	900 M2	540M2	440M2
Case i	SK2800 M2 A	2500 M2	900 M2 B	540M2 A	440M2 A
Case ii	SK2800 M2 B	2500 M2	900 M2 A	540M2 B	440M2 B
Case iii	SK2800 M2 A	SK 2800 M2 B	900 M2 B	540M2 A	440M2 A

Shri Shankara SSK Praposed Vapour bleeding scheme considering vapourline for 5500 TCD

3) SOLID BALANCE REPORT AS PER GIVEN DATA

			%	%	SOLIDS T/HR	QUANT %
POL BALANCE	PARTICULARS	SOLIDS(MT)	BRIX	PURITY	SOLIDS I/HK	CANE

POL IN CANE	13.04		SYRUP	14.84	60.00	84.00	25.98	24.74
POL IN MJ	12.34		A MASSECUITE	25.81	91.00	88.00	45.17	28.36
POL IN BAGASSE	0.70		A HEAVY	11.58	80.00	74.00	20.27	14.48
POL IN FC	0.10		A LIGHT	0.60	75.00	88.00	1.05	0.80
POL IN FM	1.26	1.26	A SUGAR	13.63	99.98	99.90	23.85	13.63
POL UNDETERR	0.10		AFW SUGAR	14.23	99.40	99.40	24.89	14.31
TOTAL LOSS	2.16		B MASSECUITE	11.30	94.00	75.00	19.77	12.02
			B HEAVY	5.09	80.00	53.00	8.91	6.37
RECOVERY	10.90		B SUGAR	5.92	90.00	95.00	10.36	6.58
			C MASSECUITE	6.33	100.00	55.00	11.08	6.33
			C LIGHT	0.95	78.00	60.00	1.66	1.22
			FINAL MOLASSES	3.64	88.00	35.00	6.36	4.13
			CFW SUGAR	2.69	96.00	82.00	4.71	2.81
			CAW SUGAR	1.74	95.00	94.00	3.05	1.83
			DRY SEED	2.42	90.00	-	4.24	2.69
			MELT	13.04	65.00	95.00	22.82	20.06
			Total Massecute%	S Cane				46.71

4) BOILING HOUSE EXISTING & PRAPOSED EQUIPMENT LIST

Sr. No	Equipment particulars	Existing	Required as per 4200 TCD	REMARK
		Working	Working	
1	Raw Juice receiving tank	21 M3		No change
2	Mass Flow meter	300T/HR	300T/HR	No change
3	Juice heaters			All RJC,S,JC & CL.JC lines to be replace by 8" line & JH beat valves to change by 200NB size
4	1) VLJH (Tubular)	350 M2 x2No's	350 M2 x2No's	No change
5	2) Condensate R.JC heater (Duplex heater)	Nill	170M2 x2 No's	Existing JH re arranged
6	3) R.JC 3rd heating (Tubular)	170M2 x2 No's	170M2 x2 No's	Existing JH re arranged
7	S.JC 1st & 2nd heating (Tubular)	170M2 x3 No's	170M2 x3 No's	Existing JH re arranged
8	Cl.Juice heater 1st & 2nd (Tubular)	170M2 x1 No's	170M2 x2 No's	Existing spare JH re arranged
9	Juice sulphitor	300 HL	300HL	Existing is Suitable
10	Juice sulphitor Auto pH control system	Manual		Single loop Auotamtion with Suitable capacity required
11	Sulphured Juice Receiving Tank	20 M3	40 M3 Capacity tank required	Tank to be modify to suit requirement
12	Sulphur Burners			
	Juice side	140Kg/Hr x 2 Nos	140 Kg/Hr x 2 Nos	

	Syrup side	70 Kg/Hr x 2 Nos	70 Kg/Hr x 2 Nos	Existing is Suitable but proper heat recovery system to be install
13	Air Blowers			
	Juice side	846 M3/Hr	924 M3/Hr	Existing is Suitable
	Syrup side	600 M3/Hr x 2	630 M3/Hr	Existing is Suitable
14	Lime Slacker Unit	1200 Kg/Hr	1200 Kg/Hr	Existing is Suitable
15	Lime cyclone	Not available		
16	Lime classifier	Not available		
17	MOL Screening	Not available	Suitable to screen 20M3/Hr MOL vibro x 2 No's needed	SUITABLE FOR SLAKER CAPACITY required
18	MOL receiving tanks	15 M3 x 2 no's	15 M2 x 3 No's tank required	Existing is Suitable but Screended MOL Recireving purpose 1 tank of same capcity required
1.5				
19	Juice clarifier	490MT		Existing is Suitable
		555 Type		
20	Clear Juice Receiving tank	Not Mentioned	28 M3 X 1 No's Tank required	
21	Vacuum filter Filtering area	236		
22	Vacuum filter	8' X 16' = 36		Eviating is Suitable
		10' x 20' = 56		Existing is Suitable
		16' x 32' = 144		Spare VF accsseries not available
	Mud tank	8 M3		Existing is Suitable

	Filtrate tank	4M3		Existing is Suitable
	Cake wash tank	NA		To be install
	Mud Mixer	4M3		Existing is Suitable
	Bagacillo blower			
	Bagacillo cyclone			Existing is Suitable
	Inter connecting pipeline	270mm Dia		Leakages to be arrest
	Barometric condenser			Existing is Suitable but line leakages to be arrest
	Vacuum pump			
23	Evaporator bodies			
	SK vessel	2800 M2	2800SK	Spare 2800M2 body to be
	1st/ 2nd Vessel	2500 M2	2800SK	relocate & use as a stand by to 1st/2nd body
	2nd vessel		2500	
	3rd A vessel	900	900	900 M2 B body to be relocate
	3rd B vessel	700/900	700/900	& Existing is Suitable but
	4th A vessel	560	560	vapour line & cut line to be re
	4th B vessel	560	560	arrange as per the flow drawing
	Vth A Vessel	440	440	drawing
	Vth B Vessel	440	440	
24	Un Sulphured syrup Receiving tank			Existing is Suitable
25	Ev.setMultijet condenser	Single entry x 2 No;s		Existing is Suitable
26	Syrup Sulphitor	120HL		Existing is Suitable but leakages to be arrest
27	Sulphured Syrup receiving tank	1.5M3		Existing is Suitable
28	Syrup + molasses supply tanks			

29	For Syrup + Melt	18.75 M3 x 10 No's	Existing is Suitable
	For A Light	8.24 M3 x 2 No's	Existing is Suitable
30	For A-Heavy Molasses		
31	For B-Heavy Molasses	8.24 M3 x 13 No's	Existing is Suitable
32	For C-Light Molasses		
33	Molasses conditioners		
	AH Diluter	5M3	Existing is Suitable
	BH/CL Diluter	9.5 M3	Existing is Suitable
34	Vacuum pans		
	A Pan	80 T x 1 No's	Spare under erection
		80 T x 2 No's	
		50T x 2 No's	Existing is Suitable
		60T x 1 No's	
	B Grain Pan	40 T x 1 No's	Existing is Suitable
	B Pan	15 Mt/Hr	Existing is Suitable
	C Grain Pan	40 T x 1 No's	Existing capacity is bottle neck
	C Pan	50 T x 1 No's	so B grain pan to be use alternatively as per need
35	Pan Condensate tank		
36	Dry seed Crystallizer	50MT	Existing is Suitable
37	B seed Crystallizer	30MT	Existing is Suitable
38	A VC	NIL	Existing is Suitable
39	B VC	25.87 T + 22.68 T	Existing is Suitable
40	C VC	33 MT	Existing is Suitable
41	Molasses Conditioner		

	A Heavy	4.62 Mt capacity	Existing is Suitable
	B Heavy	9.4 Mt Capacity	Existing is Suitable
	C Light	9.4 Mt Capacity	Existing is Suitable
42	Air cooled receiving crystallizers		
	For A-Masscuite receiving	85 x 3 No's +55 x 3 No's	Existing is Suitable
	For B-Massecuite receiving	30 x 4 No's + 150Mt MVC	30 x 4 No's + 150Mt MVC
	For C-Massecuite receiving	30 x 2 No's + 200Mt MVC +120MVC	Existing 150Mt C VC to be used for B M/C & 120Mt VC use for C M/c
43	Centrifugal machines		
44	A Pugmill	11.0 MT	Existing is Suitable
45	Batch Machines For A M/C	1750Kg/Cysl x 2 No's	1750Kg/Cysl x 1 No's new machine is required
46	A Heavy Run off Tank	4.2M3	Existing is Suitable
47	A Light Run off tank	4.2M3	Existing is Suitable
49	B Pugmill	4.8 M3	Existing is Suitable
50	Machine For B Massecuite	NK1100 x 3 No's	New NK1100 x 1 No's machine required for B M/c / CAW curing
51	Bh Run off Tank	1.7M3	Existing is Suitable
52	B seed magma Mixer	6 M3	Existing is Suitable
53	CFW Pugmill	3M3	Existing is Suitable

54	Transient heater	Nill	4Nos new transient heaters to suit for NK1100 machine to be required
55	Machine For CFW	NK1100 x 4 No's	Existing is Suitable
56	CFW Magma mixer	10.2M3	Existing is Suitable
57	CAW Pugmill	3.5 M3	Existing is Suitable
58	For CFW magma	NK1100 x 1 No's	New NK1100 x 1 No's machine required for B M/c / CAW curing
59	Meltercapcity	15Mt	To be modify to handle 35 Mt melt load
60	Rorimelter	15 MT	Existing is Suitable
61	Air Compressor	2Nos x 225 CFM	Existing is Suitable
	Sugar Hopper A	4 No's x 1.5 mtr width	
62	Hot Blower for A set	5550 CFM	Not in Use
	Cold Blower for A set	5550 CFM	
63	Sugar Hopper B	3 No's x 2.0 mtr width	Existing is Suitable
64	Hot Blower for A set	6550 CFM	Existing is Suitable
65	Cold Blower for A set	6550 CFM	Existing is Suitable
66	Sugar Elevator B	40Mt/Hr	Existing is Suitable
67	Sugar Grader A	40Mt/Hr	1 No's 6 Dec 35 MT Grader is
07	Sugar Grader B	10Mt/Hr	required
68	Sugar Silo capacity	NIL	
69	Sugar Weighing Machine	2 No's	Capacity not mentioned
70	Sugar Bag Stiching machine	2 No's of capacity 100 bag/Min	Speed to be rectify

71	Cold Water Overhead tank capacity	8.49 M3	Existing is Suitable
72	Hot Water Overhead tank capacity	11.64 M3	Existing is Suitable
73	2nd body condensate water tank	NIL	10M3 new overhead water tank required

5)	5) EXISTING AND PRAPOSED BOILNG HOUSE PUMP LIST												
Expai	Expansion from 2500 TCD to 4200TCD												
	CANE – Tons	4200/1 75		Colour cod Pumps to b			New						
				Green - Ex	isting p	umps	used						
				Red - Poin	ts to be	discu	issed						
			EXISTI	NG PUMPS				RE ARE	RANGEMEN	IT FOR	175	TCH	
SI.N o	DESCRIPTI ON OF THE PUMP	Make	NO. OF PUMP S	CAPACI TY IN M ³ / Hr	HEA D	HP	RP M	NO. OF PUMP S	CAPACI TY IN M3/Hr	HEA D	H P	RP M	REMARKS
1	Screened RJuice Pumps	PSP	2	250	45	10 0	148 5						250m3 X 2 No's new pump with 70mtr head required.
2	Exhaust Condensate Pumps For (2800 M2)	Sintech	2	80	40	30	146 0						No Change
3	2500 M2 body	Wilo	2	100	30	20	146 0	2	100	30	20	146 0	No Change
4	900 M2 body	KPD	1	80	30	10	145 5	1	80	30	10	145 5	No Change
5	700 M2 body	Wilo	1	10	25	3	145 0	1	10	25	3	145 0	No Change
6	4A Body	KPD	1	55	25	20	145 0	1	55	25	20	145 0	No Change

7	4B Body	KPD	1	55	25	15	145 0	1	55	25	15	145 0	No Change
8	5A Body	KPD	1	55	25	15	145 0	1	55	25	15	145 0	No Change
9	5B Body	KPD	1	55	25	10	145 0	1	55	25	10	145 0	No Change
10	VLJH Condensate pump			Not Given									If avaialbleexisit ng used
11	JH No 01 Condensate	Wilo	1	10	25	3	145 5						NA Since used as a Cond Heater
12	JH No 02 Condensate	Wilo	1	10	25	3	145 5						Cond Ticator
13	JH No 03 Condensate	KPD	1	55	25	10	145 5	1	55	25	10	145 5	No Change
14	JH No 04 Condensate	KPD	1	55	25	5	145 5	1	55	25	5	145 5	No Change
15	JH No 05 Condensate	Wilo	1	10	25	3	145 5	1	10	25	3	145 5	
16	JH No 06 Condensate	KPD	1	55	25								No Change
	CJ2 JH		NIL										10M3 x 1 No's pump required
17	Pan Cond Pump	KPD	3	55	25	Not	given	3	55	25	Not give		IF HP suitable then exisitng used
18	Sulphured Juice	PSP	1	200	32	75	147 5						No Change

		PSP	1	250	45	10	148 0			
19	Clear Juice	KPD	2	175	30	75	147 5			No Change
20	Filtrate Pump	KSB	2	150		10	144 0			No Change
21	Mud Pump	SHD	1	55	25	13	144 0			One Spare Pump of same capaciity required
22	Pan Injection pump	KPD	1	1300	20	15 0	147 8			Exisitng pumps used
		Sintech	1	1300	20	15 0	147 8			
		Sintech	2	2500	20	22 0	990			
23	Quadrauple Injection Pump	KPD	2	680	22	75	148 0			No Change
24	Spray Pump	Sintech	2	2500	12	15 0	985			Exisitng pumps used
			1	2000	12	15 0	985			
25	Unsulphured Syrup	PSP	1	200	32	30	146 0			Exisitng pumps used
		PSP	1	200	32	25	140 0			
26	Sul Syrup Pump	Sintech	2	60	30	15	145 0			Exisitng pumps used

		SHD	1	55	25	15	145 0						
27	Lime Pump			Not Given									If exisitng suitable then use existing
28	Service Pump	KPD	3	NA				2	150	30	30	148 0	If exisitng suitable use existing
29	A Massecuite pump	INDO	2	60	30	25	144 0						Exisitng pumps used
		PSP	1	50	30	25	144 0						
30	B Massecuite pump	PSP	2	20	30	15	144 0						Exisitng pumps used
		PSP	2	40	30								
31	C Massecuite		2	40	30	20	144 0						Exisitng pumps used
32	B seed	PSP	1	30	30	15	144 0						Exisitng pumps used
			1	40	30	20	144 0						
33	CAW	PSP	1	30	30	15	144 0	2	30	30	15	144 0	one new pump of same capacity required
34	CFW	PSP	1	20	30	10	144 0	2	20	30	10	144 0	one new pump of same capacity required

35	C MVC Pump	PSP	1	20	30	15	144 0	1	20	30	15	144 0	Exisitng pumps used
36	B MVC Pump	PSP	1	20	30	15	144 0	1	20	30	15	144 0	Exisitng pumps used
37	A Heavy Pump	Hiflow	1	40	40	15	144 0	1	40	40	15	144 0	one new pump of same capacity required
38	A Light Pump	Hiflow	1	40	40	15	144 0	1	40	40	15	144 0	one new pump of same capacity required
39	B Heavy Pump	Hiflow	2	40	40	20	144 0						Exisitng pumps used
40	C Light Pump	Hiflow	1	40	40								Exisitng pumps used
41	Final Molasses	Hiflow	1	40	40								one new pump of same capacity required
42	B Grain Feeding pump			Not Given									If Suitble capacity pump then exisitng used
43	Filter cake wash pump			Not Given				2	20	20	3	285 0	2 No's new cake wash pump required

